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Phase-Coupled Nonlinear Dynamical Systems, 
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The stability of a class of coupled identical autonomous systems of first-order 
nonlinear ordinary differential equations is investigated. These couplings play a 
central role in controlling chaotic systems and can be applied in electronic circuits 
and laser systems. As applications we consider a coupled van der Pol equation 
and a coupled logistic map. When the uncoupled system admits a first integral 
we study whether a first integral exists for the coupled system. Gradient systems 
and the Painlev6 property are also discussed. Finally, the relation of the Liapunov 
exponents of the uncoupled and coupled systems are discussed. 

Consider the autonomous system of first-order ordinary differential 
equations 

du 
- -  = F(u)  (1) 
dt 

where u = (u~, u2 . . . . .  un) r. We assume that the functions Fj: R n -+ R are 
analytic. Assume that u* is a fixed point of (1), i.e., F (u*) = 0. The 
variational equation of (1) is given by (Steeb, 1992, 1993, 1994) 

dy 3F 
~ -  = a--u (u(t))y (2) 

where OF/Ou is the Jacobian matrix. Inserting the fixed point u* into the 
Jacobian matrix results in an n x n matrix 

3F (u u*) (3) 
A : = O u  
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with constant coefficients. The eigenvalues h~ . . . . .  hn of this matrix determine 
the stability of the fixed point u*. Furthermore the eigenvalues provide 
information as to whether Hopf bifurcation can occur. In this case we assume 
that F depends on a (bifurcation) parameter. Moreover, the variational system 
(2) is used to find the one-dimensional Liapunov exponents. 

In controlling the chaos of the autonomous system (1) (n --> 3) the 
coupling of two identical systems according to 

du dv 
- -  = F ( u )  + c ( v  - u ) ,  - -  = F ( v )  ( 4 )  
dt dt 

and 

du dv 
- -  = F ( u )  + c ( v  - u ) ,  - -  = F ( v )  + c ( u  - v )  ( 5 )  
dt dt 

plays a central role (Steeb et al., 1995, Fujisaka and Yamada, 1983; van Wyk 
and Steeb, 1997). Here c ~ R. First we realize that (u*, v*) with v* = u* 
is a fixed point of (4) and (5) if u* is a fixed point of (1). Inserting the fixed 
point (u*, u*) into the Jacobian matrix associated with (4) and (5) yields a 
2n X 2n matrix. We now show that the eigenvalues of this 2n x 2n matrix 
can be found from the eigenvalues of  the n X n matrix given by A. Then 
from the 2n eigenvalues of (2) we can determine the stability of the fixed 
point (u*, u*) for the systems (4) and (5). 

First we consider system (4). To find the eigenvalues we prove the 
following. 

Theorem 1. Let A be an n X n matrix over the real numbers. Let hi, 
. . . .  hn be the eigenvalues of A. Define the 2n • 2n matrix M as 

(ac,. ,6, 
M := 0n 

where In is the n X n unit matrix. Then the eigenvalues of M are given by 

hl, hz . . . . .  hn, h l - - c ,  h 2 - - c  . . . . .  h n - - c  (7) 

Proof There exists an n X n orthogonal matrix Q such that QrAQ = 
D + U, where D := diag (hi, h2 . . . . .  hn) and U is a strictly upper-triangular 
n X n matrix. Let 
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where On is the n X n zero matrix. Thus 

It follows that 

 I(QT0n Q0) 

2045 

(9) 

n • n matrix. Let 

where On is the n • n zero matrix. Thus 

p-1 = _ Q r  Qr 

It follows that 

D +  U 
P-  IMP = On ( D -  2cln) + U 

(13) 

(14) 

(15) 

Proof. There exists an n X n orthogonal matrix Q such that QrAQ = 
D + U, where D := diag (hi, k2 . . . . .  k~) and U is a strictly upper-triangular 

P-'MP = ( (0  - c1n) + U cln 
On D + U] (10) 

This is an upper-triangular matrix. The entries on the diagonal are kl . . . . .  
kn, h~ - c . . . . .  hn - c, which are the eigenvalues of M. This proves 
the theorem. 

Obviously the matrix M is the matrix which follows from the Jacobian 
matrix of system (4) after inserting the fixed point (u*, u*). 

Next we consider the coupled system (5). To find these eigenvalues we 
prove the following. 

Theorem 2. Let A be an n • n matrix over the real numbers. Let h~, 
. . . .  kn be the eigenvalues of A. Define the 2n • 2n matrix M as 

a - cln cln ~ 
M "= cIn A - cIn] (11) 

where In is the n • n unit matrix. Then the eigenvalues of  M are given by 

hi, h2 . . . . .  hn, h l - 2 C ,  k 2 -  2c . . . . .  h n -  2c (12) 
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This is an upper-triangular matrix. The entries on the diagonal are h~ . . . . .  
hn, k~ - 2c . . . . .  hn - 2c, which are the eigenvalues of M. This proves 
the theorem. 

Obviously the matrix M is the matrix which follows from the Jacobian 
matrix of system (4) after inserting the fixed point (u*, u*). 

As an application, let us consider the van der Pol equation 

d u l  d u 2  
- u2, - r(1 - uZ)uz  - u l  (16) 

d t  d t  

Then u* = (0,0) is a fixed point of (16). The eigenvalues of the functional 
matrix for this fixed point are given by h~,2 = r / 2  +_ (rZ/4 - 1) 1/2. Thus 
the uncoupled system shows Hopf bifurcation (Steeb, 1993). We find Hopf 
bifurcation when r crosses the imaginary axis. For the van der Pol equation 
a stable limit cycle is born. If we consider the coupling due to systems (5), 
we find that the eigenvalues of the coupled system are given by ix~ = kb 
~1, 2 "~" h 2 ,  ~b 3 = ~k I - -  2c, ~l, 4 = ~k 2 - -  2c. 

Theorems 1 and 2 can also be applied to coupled maps. For example, 
Theorem 2 can be applied to 

xn+j --  f ( x . )  + c ( y .  - x . ) ,  Y.+I = f(Yn) + c ( x .  - y . )  ( 1 7 )  

As an example, consider the logistic map with f i x )  = r x ( 1  - x ) .  T h e  map f 
admits the fixed points x~' = 0 and x ~  = ( r  - 1 ) / r .  In the following we 
consider the fixed point x-~. Then we find that the Jacobian (which is a l • 
1 matrix) at this fixed point is given by A = h = 2 - r. Thus the eigenvalues 
for the coupled system are 2 - r, 2 - r - 2c. An electronic circuit for the 
phase-coupled logistic map xt+l = 1 - a x  2 - b (x t  - Y t ) ,  Yt+l = 1 - a x  2 - 

b ( y t  - x t )  has been described by Mishina e t  a L  (1985). 
Let us now study first integrals of  the system (1). Assume that (1) 

admits a first integral of the form g(u) exp(et). Such first integrals appear in 
dissipative systems (Steeb, 1982; Steeb and Erig, 1983; Steeb and Euler, 
1988). When e = 0 the nondissipative case is also included. 

T h e o r e m  3.  Assume that (1) admits the first integral g(u) exp(et). Then 

(g(u) + g(v))exp(~t) (18) 

is a first integral of the coupled system if 

0g(u) 0g(v) _ 0, j = 1, 2 . . . . .  n (19) 
Ouj 0uj 

P r o o f  From the condition that g(u) exp(r is a first integral of (1) we find 

Og(u___~) Fj(u) + cg(u) = 0 (20) 
j = l  OUj 
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Inserting (20) and (5) into 

d 
dt ([g(u) + g(v)]exp(et)) = 0 

we obtain 

j= l  

This proves the theorem. 

(21) 

An example where we can apply this theorem is the Lotka-Volterra 
model, 

dul 
- cul + ul(uz + u3) 

dt  

du2 
- -  CU 2 "[- U2(U 3 -- Ul) 

dt 

du3 
- -  = cu3 + u 3 ( - u l  - u2) (23) 
dt  

An explicitly time-dependent first integral is given by l(u, t) = (u~ + u2 + 
U3) e - c t .  

Assume now that the system (1) is a gradient system, i.e., F (u) = 
-g rad  W(u), where W is the potential. What can be said about the coupled 
system (5)? It is obvious that the coupled system (5) is also a gradient system, 
since it can be derived from the potential W(u) + W(v) + �89 - v)r(u - v). 

Let us now discuss the Painlev6 test. Let u(t) = @(Uo) be a solution of 
the initial value problem of (1). Let v(t) = @t(v0). Then (u(t), v(t)) is a 
particular solution of the coupled system (5) if u0 = v0. If Uo ~ v0 then (u(t), 
v(t)) is no longer a solution for (5). A similar argument can be applied to 
the Painlev6 test Steeb and Euler (1988). If the uncoupled system (1) passes 
the Painlev6 test, i.e., has an expansion (considered in the complex time 
domain) of 

uj(t) = (t - ti)"J ~ aj(t  - tl) j ( j  = 1, 2 . . . . .  n)  
j=0 

with the right number of Kowalevski exponents [see Steeb and Euler (1988) 
for more details], then the coupled system (5) admits an expansion of the 
form (u(t), v(t)) around the singularity fi, but the number of free parameters 
is one less than required. Thus the coupled system does not pass the Painlev6 
test in general if the uncoupled system (1) passes the test. 

v 3vj J" ' - uj) = 0 (22) 
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Let us now consider the Liapunov exponents. To find a relation between 
the Liapunov exponents of the coupled system (5) and the uncoupled system 
(1) we consider the time evolution of O(t) := u(t) - v(t). We call O the 
phase difference (Fujisaka and Yamada, 1983). It follows that 

dO du dv 
- - F ( u )  - F ( v )  - 2 c O  ( 2 4 )  

dt dt dt 

where we used (5). Using a Taylor expansion for F(u) and F(v) and the fact that 

0 F ( u  = u ( t ) )  _ 0 F ( v  = u ( t ) )  
(25) 

0 u  0 v  

we obtain 

dO 
- (A(t) - 2c/)O + 0 ( 0  2) (26) 

dt 

where A(t) : = 0F(u = u(t))/0u and 0 ( 0  2) indicate higher order terms in 
O. Integrating (26) and neglecting the higher order terms yields 

[ (f )J O(t) = e - 2 " r  exp A(s) ds 0(0)  (27) 

where T is the time-ordering operator. The eigenvalues ixj (] = 1, 2 . . . . .  n) of 

lira T exp ds A(s (28) 

are related to the Liapunov exponents hj (j = 1, 2 . . . . .  n) of system (1) via 
hj = lnllxjl. We find 

(IO(01) ~ exp[(km~ - 2c)t] (29) 

where the average is taken over all initial conditions u(0) and all directions 
of 0(0)  and Xm~ is the largest one-dimensional Liapunov exponent. Equation 
(29) tells us that for 2c > kmax both systems stay in phase. Consequently, 
they have the kmax of the uncoupled system (1). The two systems get out of 
phase at the value c* = XmJ2.  Thus c* provides the largest one-dimensional 
Liapunov exponent. 

Thus one of the main applications of phase-coupled chaotic systems 
would be for controlling chaos in electronic and laser systems. 
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